Сайт компьютерных навыков

В информатике универсальным исполнителем алгоритмов является. Понятие исполнителя алгоритма. Способы записи алгоритмов

Понятие исполнителя невозможно определить с помощью какой-либо формализации. Исполнителем может быть человек, группа людей, робот, станок, компьютер, язык программирования и т.д. Важнейшим свойством, характеризующим любого из этих исполнителей, является то, что исполнитель умеет выполнять некоторые команды. Так, исполнитель-человек умеет выполнять такие команды как «встать», «сесть», «включить компьютер» и т.д., а исполнитель-язык программирования Бейсик - команды PRINT, END, LIST и другие аналогичные. Вся совокупность команд, которые данный исполнитель умеет выполнять, называется системой команд исполнителя (СКИ).

В качестве примера (рис. 1.11) рассмотрим исполнителя-робота, работа которого состоит в собственном перемещении по рабочему полю (квадрату произвольного размера, разделенному на клетки) и перемещении объектов, в начальный момент времени находящихся на «складе» (правая верхняя клетка).

Рис. 1.11

Одно из принципиальных обстоятельств состоит в том, что исполнитель не вникает в смысл того, что он делает, но получает необходимый результат. В таком случае говорят, что исполнитель действует формально, т. е. отвлекается от содержания поставленной задачи и только строго выполняет некоторые правила, инструкции.

Это - важная особенность алгоритмов. Наличие алгоритма формализует процесс решения задачи, исключает рассуждение исполнителя. Использование алгоритма дает возможность решать задачу формально, механически исполняя команды алгоритма в указанной последовательности. Целесообразность предусматриваемых алгоритмом действий обеспечивается точным анализом со стороны того, кто составляет этот алгоритм.

Введение в рассмотрение понятия «исполнитель» позволяет определить алгоритм как понятное и точное предписание исполнителю совершить последовательность действий, направленных на достижение поставленной цели. В случае исполнителя-робота мы имеем пример алгоритма «в обстановке», характеризующегося отсутствием каких-либо величин. Наиболее же распространенными и привычными являются алгоритмы работы с величинами - числовыми, символьными, логическими и т.д.

Графическое представление алгоритмов

Алгоритм, составленный для некоторого исполнителя, можно представить различными способами: с помощью графического или словесного описания, в виде таблицы, последовательностью формул, записанным на алгоритмическом языке (языке программирования). Остановимся на графическом описании алгоритма, называемом блок-схемой. Этот способ имеет ряд преимуществ благодаря наглядности, обеспечивающей, в частности, высокую «читаемость» алгоритма и явное отображение управления в нем.

Прежде всего определим понятие блок-схемы. Блок-схема - это ориентированный граф, указывающий порядок исполнения команд алгоритма; вершины такого графа могут быть одного из трех типов (рис. 1.12).


Рис. 1.12

На рис. 1.12 изображены «функциональная» (a) вершина (имеющая один вход и один выход); «предикатная» (б) вершина, имеющая один вход и два выхода (в этом случае функция Р передает управление по одной из ветвей в зависимости от значения Р (Т, т.е. true, означает «истина», F, т.е. false - «ложь»); «объединяющая» (в) вершина (вершина «слияния»), обеспечивающая передачу управления от одного из двух входов к выходу. Иногда вместо Т пишут «да» (либо знак +), вместо F- «нет» (либо знак -).

Из данных элементарных блок-схем можно построить четыре блок-схемы (рис. 1.13), имеющих особое значение для практики алгоритмизации.


Рис. 1.13

На рис. 1.13 изображены следующие блок-схемы: а - композиция, или следование; б - альтернатива, или развилка, в и г - блок-схемы, каждую из которых называют итерацией, или циклом (с предусловием (в), с постусловием (г)). S1 и S2 представляют собой в общем случае некоторые серии команд для соответствующего исполнителя, В - это условие, в зависимости от истинности (Т) или ложности (F) которого управление передаётся по одной из двух ветвей. Можно доказать, что для составления любого алгоритма достаточно представленных выше четырех блок-схем, если пользоваться их последовательностями и/или суперпозициями.

Блок-схема «альтернатива» может иметь и сокращенную форму, в которой отсутствует ветвь S2 (рис. 1.14, а). Развитием блок-схемы типа альтернатива является блок-схема «выбор» (рис. 1.14, б).


Рис. 1.14.

На практике при составлении блок-схем оказывается удобным использовать и другие графические знаки (некоторые из них приведены на рис. 1.15).

Рис. 1.15. Некоторые дополнительные конструкции для изображения блок-схем алгоритмов


Свойства алгоритмов

Алгоритм должен быть составлен таким образом, чтобы исполнитель, в расчете на которого он создан, мог однозначно и точно следовать командам алгоритма и эффективно получать определенный результат. Это накладывает на записи алгоритмов ряд обязательных требований, суть которых вытекает, вообще говоря, из приведенного выше неформального толкования понятия алгоритма. Сформулируем эти требования в виде перечня свойств, которым должны удовлетворять алгоритмы, адресуемые заданному исполнителю.

  • 1. Одно из первых требований, которое предъявляется к алгоритму, состоит в том, что описываемый процесс должен быть разбит на последовательность отдельных шагов. Возникающая в результате такого разбиения запись представляет собой упорядоченную совокупность четко разделенных друг от друга предписаний (директив, команд, операторов), образующих прерывную (или, как говорят, дискретную) структуру алгоритма. Только выполнив требования одного предписания, можно приступить к выполнению следующего. Дискретная структура алгоритмической записи может. Например, подчеркиваться сквозной нумерацией отдельных команд алгоритма, хотя это требование не является обязательным. Рассмотренное свойство алгоритмов называют дискретностью.
  • 2. Используемые на практике алгоритмы составляются с ориентацией на определенного исполнителя. Чтобы составить для него алгоритм, нужно знать, какие команды этот исполнитель может понять и исполнить, а какие - не может. Мы знаем, что у каждого исполнителя имеется своя система команд. Очевидно, составляя запись алгоритма для определенного исполнителя, можно использовать лишь те команды, которые имеются в его СКИ. Это свойство алгоритмов будем называть понятностью.
  • 3. Будучи понятным, алгоритм не должен содержать предписаний, смысл которых может восприниматься неоднозначно, т.е. одна и та же команда, будучи понятна разным исполнителям, после исполнения каждым из них должна давать одинаковый результат.

Запись алгоритма должна быть настолько четкой, полной и продуманной в деталях, чтобы у исполнителя не могло возникнуть потребности в принятии решений, не предусмотренных составителем алгоритма. Говоря иначе, алгоритм не должен оставлять места для произвола исполнителя. Кроме того, в алгоритмах недопустимы также ситуации, когда после выполнения очередной команды алгоритма исполнителю неясно, какая из команд алгоритма должна выполняться на следующем шаге.

Отмеченное свойства алгоритмов называют определенностью или детерминированностью.

  • 4. Обязательное требование к алгоритмам - результативность. Смысл этого требования состоит в том, что при точном исполнении всех предписаний алгоритма процесс должен прекратиться за конечное число шагов и при этом должен получиться определенный результат. Вывод о том, что решения не существует - тоже результат.
  • 5. Наиболее распространены алгоритмы, обеспечивающие решение не одной конкретной задачи, а некоторого класса задач данного типа. Это свойство алгоритма называют массовостью. В простейшем случае массовость обеспечивает возможность использования различных исходных данных.

Понятие алгоритма - одно из основных понятий информатики. Это фундаментальное «первоначальное» понятие, которому нельзя дать строгого определения. Существуют описательные определения алгоритма, которые уточняют это понятие.

Например:

Алгоритм – последовательность действий со строго определёнными правилами выполнения.

Алгоритм - понятное и точное предписание исполнителю совершить последовательность действий, направленных на достижение поставленной цели или решение поставленной задачи.

В быту и профессиональной деятельности каждый человек сталкивается с алгоритмом как с последовательностью действий, приводящих к достижению цели: существует достаточно строго определенный порядок приготовления какого-либо блюда, правила работы на токарном станке, инструкции по заправке нити в швейную машинку, порядку выполнения медицинских процедур (например, инъекций) и т. д.

В начальных классах школы дети изучают порядок выполнения арифметических действий над многозначными числами. Этот порядок был предложен выдающимся математиком средневекового Востока Мухаммедом аль-Хорезми (9 век) и по латинскому написанию его имени (Alhorithmi ) был назван алгоритмом. В дальнейшем это понятие в значительной мере расширилось.

Алгоритм составляется для определенного класса задач . Согласно установленным правилам он характеризуется исходными данными. Например, ”сложить 2 числа” – это класс задач, а не одна задача, так как числа могут быть разные. В свою очередь “сложить числа” более широкий класс задач. Весь смысл алгоритмизации и программирования и состоит в том, чтобы составленный алгоритм служил для решения целого класса задач (любую из предложенного класса).

Понятие алгоритма неразрывно связано с понятием исполнителя.

Исполнитель – это субъект (живой или искусственный), умеющий выполнять некоторый определенный набор действий.

Приказ на выполнение одного действия из набора носит название предписания или команды .

Набор команд, которые может выполнить данный исполнитель, называется системой команд исполнителя (СКИ), или наборомдопустимых действий исполнителя.

Слова «понятное предписание» означают, что команда может быть выполнена.

Итак, задача составления алгоритма не имеет смысла, если не известны и не учитываются возможности его исполнителя.

Например, прочесть алгоритм решения системы линейных уравнений графическим методом сможет даже первоклассник, а выполнить его не сможет. С другой стороны малыш четырёх-пяти лет не сможет прочесть правила поведения за столом во время еды, но выполнять их сможет, если ему о них рассказать и показать.

Как уже говорилось, исполнителем может быть не человек, а автомат, а ПК является лишь частным примером исполнителя, чьё поведение реализуется на основе алгоритма.

Исполнитель может быть формальным , т.е. не задумывается, не знает целей.

Если исполнитель может выполнить каждую команду алгоритма в отдельности, последовательно, и при этом действия исполнителя на каждом шаге однозначно определены, то исполнитель может не задумываться о цели алгоритма и даже не знать о ней, но независимо от этого достичь данной цели, только лишь строго выполняя предписания алгоритма. В этом случае исполнитель действует формально , т.е. отвлекается от цели и лишь строго выполняет инструкции. Формальное исполнение алгоритмов лежит в основе управления автоматическими устройствами.

Однако и человек может быть формальным исполнителем. Если он не знает цели выполняемой работы, ему придется строго следовать инструкциям.

Компьютер является формальным исполнителем алгоритмов . Чтобы он мог решать задачу в строгом соответствии с инструкциями, он должен получить алгоритм решения. Таким образом, алгоритм является управляющей информацией .

Понятие алгоритма. Исполнители алгоритмов. Свойства алгоритмов

Понятие алгоритма так же фундаментально для информатики, как и понятие информации. Существует много различных определений алгоритма, так как это понятие достаточно широкое и используется в различных областях науки, техники и повседневной жизни.

Алгоритм – понятная и точная последовательность действий, описывающая процесс преобразования объекта из начального состояния в конечное.

Алгоритм - это предназначенное для конкретного исполнителя точное описание последовательности действий, направленных на решение поставленной задачи.

Исполнителем алгоритма может быть как человек (кулинарные рецепты, различные инструкции, алгоритмы математических вычислений), так и техническое устройство. Различные машины (компьютеры, промышленные роботы, современная бытовая техника) являются формальными исполнителями алгоритмов. От формального исполнителя не требуется понимание сущности решаемой задачи, но требуется точное выполнение последовательности команд.

Алгоритм можно записывать различными способами (словесное описание, графическое описание – блок схема, программа на одном из языков программирования и т.д.). Программа – это алгоритм, записанный на языке программирования .

Для создания алгоритма (программы) необходимо знать:

    полный набор исходных данных задачи (начальное состояние объекта);

    цель создания алгоритма (конечное состояние объекта);

    систему команд исполнителя (то есть набор команд, которые исполнитель понимает и может выполнить).

Полученный алгоритм (программа) должен обладать следующим набором свойств:

    дискретность (алгоритм разбит на отдельные шаги - команды);

    однозначность (каждая команда определяет единственно возможное действие исполнителя);

    понятность (все команды алгоритма входят в систему команд исполнителя);

    результативность (исполнитель должен решить задачу за конечное число шагов).

Большая часть алгоритмов обладает также свойством массовости (с помощью одного и того же алгоритма можно решать множество однотипных задач).

Способы описания алгоритмов

Выше отмечалось, что один и тот же алгоритм может быть записан по-разному. Можно записывать алгоритм естественным языком. В таком виде мы используем рецепты, инструкции и т.п. Для записи алгоритмов, предназначенных формальным исполнителям, разработаны специальные языки программирования . Любой алгоритм можно описать графически в виде блок-схемы . Для этого разработана специальная система обозначений:

Обозначение

Описание

Примечания

Начало и конец алгоритма

Ввод и вывод данных.

Вывод данных иногда обозначают иначе:

Действие

В вычислительных алгоритмах так обозначают присваивание

Развилка

Развилка - компонент, необходимый для реализации ветвлений и циклов

Начало цикла с параметром

Типовой процесс

В программировании - процедуры или подпрограммы

Переходы между блоками

Приведем пример описания алгоритма суммирования двух величин в виде блок-схемы:

Такой способ описания алгоритм наиболее нагляден и понятен человеку. Поэтому, алгоритмы формальных исполнителей обычно разрабатывают сначала в виде блок-схемы, и только затем создают программу на одном из языков программирования .

Типовые алгоритмические структуры

Программист имеет возможность конструировать и использовать нетипичные алгоритмические структуры, однако, в этом нет необходимости. Любой сколь угодно сложный алгоритм может быть разработан на основе трёх типовых структур: следования, ветвления и повторения. При этом структуры могут располагаться последовательно друг за другом или вкладываться друг в друга.

Линейная структура (следование)

Наиболее простой алгоритмической структурой является линейная . В ней все операции выполняются один раз в том порядке, в котором они записаны.

Ветвление

В полном ветвлении предусмотрено два варианта действий исполнителя в зависимости от значения логического выражения (условия). Если условие истинно, то выполняться будет только первая ветвь, иначе только вторая ветвь.

Вторая ветвь может быть пустой. Такая структура называется неполным ветвлением или обходом .

Из нескольких ветвлений можно сконструировать структуру «выбор » (множественное ветвление), которая будет выбирать не из двух, а из большего количества вариантов действий исполнителя, зависящих от нескольких условий. Существенно, что выполняется только одна ветвь - в такой структуре важное значение приобретает порядок следования условий: если выполняются несколько условий, то сработает только одно из них - первое сверху.

Цикл (повторение)

Цикл позволяет организовать многократное повторение одной и той же последовательности команд - она называется телом цикла. В различных видах циклических алгоритмов количество повторений может зависеть от значения логического выражения (условия) или может быть жестко задано в самой структуре. Различают циклы: «до », «пока », циклы со счётчиком. В циклах «до» и «пока» логическое выражение (условие) может предшествовать телу цикла (цикл с предусловием ) или завершать цикл (цикл с послеусловием ).

Циклы «до » - повторение тела цикла до выполнения условия:

Циклы «пока » - повторение тела цикла пока условие выполняется (истинно):

Циклы со счётчиком (с параметром) – повторение тела цикла заданное число раз:

Вспомогательный алгоритм (подпрограмма, процедура)

Вспомогательный алгоритм представляет собой модуль, к которому можно многократно обращаться из основного алгоритма. Использование вспомогательных алгоритмов может существенно уменьшить размер алгоритма и упростить его разработку.

Методы разработки сложных алгоритмов

Существует два метода разработки сложных алгоритмов:

Метод последовательной детализации задачи («сверху-вниз») состоит в том, что исходная сложная задача разбивается на подзадачи. Каждая из подзадач рассматривается и решается отдельно. Если какие-либо из подзадач сложны, они также разбиваются на подзадачи. Процесс продолжается до тех пор, пока подзадачи не сведутся к элементарным. Решения отдельных подзадач затем собираются в единый алгоритм решения исходной задачи. Метод широко используется, так как позволяет вести разработку общего алгоритма одновременно нескольким программистам, решающим локальные подзадачи. Это необходимое условие быстрой разработки программных продуктов.

Сборочный метод («снизу-вверх») заключается в создании множества программных модулей, реализующих решение типичных задач. При решении сложной задачи программист может использовать разработанные модули в качестве вспомогательных алгоритмов (процедур). Во многих системах программирования уже существуют подобные наборы модулей, что существенно упрощает и ускоряет создание сложного алгоритма.

Алгоритмы и процессы управления

Управление - целенаправленное взаимодействие объектов, одни из которых являются управляющими, другие - управляемыми.

В простейшем случае таких объектов два:

С точки зрения информатики управляющие воздействия можно рассматривать как управляющую информацию. Информация может передаваться в форме команд. Последовательность команд по управлению объектом, приводящая к заранее поставленной цели, называется алгоритмом управления . Следовательно, объект управления можно назвать исполнителем управляющего алгоритма. В рассмотренном примере, управляющий объект работает "не глядя" на то, что происходит с управляющим объектом (управление без обратной связи незамкнутой . Другая схема управления может учитывать информацию о процессах, происходящих в объекте управления:

В этом случае, алгоритм управления должен быть достаточно гибким, чтобы анализировать эту информацию и принимать решение о своих дальнейших действиях в зависимости от состояния объекта управления (управление с обратной связью ). Такая схема управления называется замкнутой .

Более подробно процессы управления изучаются рассматриваются кибернетикой . Эта наука утверждает, что самые разнообразные процессы управления в обществе, природе и технике происходят сходным образом, подчиняются одним и тем же принципам.

В начало темы

7.1. Что такое алгоритм?

Название "алгоритм" произошло от латинской формы имени среднеазиатского математика аль-Хорезми - Algorithmi. Алгоритм - одно из основных понятий информатики и математики.

7.2. Что такое "Исполнитель алгоритма"?

Исполнителя хаpактеpизуют:

    • сpеда;
    • элементаpные действия;
    • cистема команд;
    • отказы.

Сpеда (или обстановка) - это "место обитания" исполнителя. Напpимеp, для исполнителя Pобота из школьного учебника сpеда - это бесконечное клеточное поле. Стены и закpашенные клетки тоже часть сpеды. А их pасположение и положение самого Pобота задают конкpетное состояние среды .

Система команд . Каждый исполнитель может выполнять команды только из некотоpого стpого заданного списка - системы команд исполнителя. Для каждой команды должны быть заданы условия пpименимости (в каких состояниях сpеды может быть выполнена команда) и описаны pезультаты выполнения команды . Напpимеp, команда Pобота "ввеpх" может быть выполнена, если выше Pобота нет стены. Ее pезультат - смещение Pобота на одну клетку ввеpх.

После вызова команды исполнитель совеpшает соответствующее элементаpное действие .

Отказы исполнителя возникают, если команда вызывается пpи недопустимом для нее состоянии сpеды.

В информатике универсальным исполнителем алгоритмов является компьютер .

7.3. Какими свойствами обладают алгоpитмы?
Основные свойства алгоритмов следующие:

Понятность для исполнителя - т.е. исполнитель алгоритма должен знать, как его выполнять.

Дискpетность (прерывность, раздельность) - т.е. алгоpитм должен пpедставлять пpоцесс pешения задачи как последовательное выполнение пpостых (или pанее опpеделенных) шагов (этапов).

Опpеделенность - т.е. каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоpитма носит механический хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.

Pезультативность (или конечность). Это свойство состоит в том, что алгоpитм должен пpиводить к pешению задачи за конечное число шагов.

Массовость . Это означает, что алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.

7.1. Что такое алгоритм?

Название "алгоритм" произошло от латинской формы имени среднеазиатского математика аль-Хорезми - Algorithmi. Алгоритм - одно из основных понятий информатики и математики.

7.2. Что такое "Исполнитель алгоритма"?

Исполнителя хаpактеpизуют:

    • сpеда;
    • элементаpные действия;
    • cистема команд;
    • отказы.

Сpеда (или обстановка) - это "место обитания" исполнителя. Напpимеp, для исполнителя Pобота из школьного учебника сpеда - это бесконечное клеточное поле. Стены и закpашенные клетки тоже часть сpеды. А их pасположение и положение самого Pобота задают конкpетное состояние среды .

Система команд . Каждый исполнитель может выполнять команды только из некотоpого стpого заданного списка - системы команд исполнителя. Для каждой команды должны быть заданы условия пpименимости (в каких состояниях сpеды может быть выполнена команда) и описаны pезультаты выполнения команды . Напpимеp, команда Pобота "ввеpх" может быть выполнена, если выше Pобота нет стены. Ее pезультат - смещение Pобота на одну клетку ввеpх.

После вызова команды исполнитель совеpшает соответствующее элементаpное действие .

Отказы исполнителя возникают, если команда вызывается пpи недопустимом для нее состоянии сpеды.

В информатике универсальным исполнителем алгоритмов является компьютер .

7.3. Какими свойствами обладают алгоpитмы?
Основные свойства алгоритмов следующие:

Понятность для исполнителя - т.е. исполнитель алгоритма должен знать, как его выполнять.

Дискpетность (прерывность, раздельность) - т.е. алгоpитм должен пpедставлять пpоцесс pешения задачи как последовательное выполнение пpостых (или pанее опpеделенных) шагов (этапов).

Опpеделенность - т.е. каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоpитма носит механический хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.

Pезультативность (или конечность). Это свойство состоит в том, что алгоpитм должен пpиводить к pешению задачи за конечное число шагов.

Массовость . Это означает, что алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.

Похожие публикации