Сайт компьютерных навыков

Определение ачх. Определение частотных характеристик. Формулы получения АФХ по АЧХ и ФЧХ

Аббревиатура АЧХ расшифровывается как амплитудно-частотная характеристика. На английском этот термин звучит как “frequency response”, что в дословном переводе означает “частотный отклик”. Амплитудно-частотная характеристика цепи показывает зависимость уровня на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства. АЧХ может быть определена аналитически через формулы, либо экспериментально. Любое устройство предназначено для передачи (или усиления) электрических сигналов. АЧХ устройства определяется по зависимости коэффициента передачи (или коэффициента усиления) от частоты.

Коэффициент передачи

Что такое коэффициент передачи? Коэффициент передачи – это отношение на выходе цепи к напряжению на ее входе. Или формулой:

где

U вых – напряжение на выходе цепи

U вх – напряжение на входе цепи


В усилительных устройствах коэффициент передачи больше единицы. Если устройство вносит ослабление передаваемого сигнала, то коэффициент передачи меньше единицы.

Коэффициент передачи может быть выражен через :

Строим АЧХ RC-цепи в программе Proteus

Для того, чтобы досконально разобраться, что такое АЧХ, давайте рассмотрим рисунок ниже.

Итак, имеем “черный ящик”, на вход которого мы будем подавать синусоидальный сигнал, а на выходе черного ящика мы будем снимать сигнал. Должно соблюдаться условие: нужно менять частоту входного синусоидального сигнала, но его амплитуда должна быть постоянной .


Что нам делать дальше? Надо измерить амплитуду сигнала на выходе после черного ящика при интересующих нас значениях частоты входного сигнала. То есть мы должны изменять частоту входного сигнала от 0 Герц (постоянный ток) и до какого-либо конечного значения, которое будет удовлетворять нашим целям, и смотреть, какая амплитуда сигнала будет на выходе при соответствующих значениях на входе.

Давайте разберем все это дело на примере. Пусть в черном ящике у нас будет самая простая с уже известными номиналами радиоэлементов.


Как я уже говорил, АЧХ может быть построено экспериментально, а также с помощью программ-симуляторов. На мой взгляд, самый простой и мощный симулятор для новичков – это Proteus. С него и начнем.

Собираем данную схему в рабочем поле программы Proteus


Для того, чтобы подать на вход схемы синусоидальный сигнал, мы кликаем на кнопочку “Генераторы”, выбираем SINE, а потом соединяем его со входом нашей схемы.

Для измерения выходного сигнала достаточно кликнуть на значок с буквой “V” и соединить выплывающий значок с выходом нашей схемы:

Для эстетики, я уже поменял название входа и выхода на sin и out. Должно получиться как-то вот так:


Ну вот, пол дела уже сделано.

Теперь осталось добавить важный инструмент. Он называется “frequency response”, как я уже говорил, в дословном переводе с английского – “частотный отклик”. Для этого нажимаем кнопочку “Диаграмма” и в списке выбираем “frequency”

На экране появится что-то типа этого:


Кликаем ЛКМ два раза и открывается вот такое окошко, где в качестве входного сигнала мы выбираем наш генератор синуса (sin), который у нас сейчас задает частоту на входе.


Здесь же выбираем диапазон частоты, который будем “загонять” на вход нашей цепи. В данном случае это диапазон от 1 Гц и до 1 МГц. При установке начальной частоты в 0 Герц Proteus выдает ошибку. Поэтому, ставьте начальную частоту близкую к нулю.



и в результате должно появится окошко с нашим выходом


Нажимаем пробел и радуемся результату


Итак, что интересного можно обнаружить, если взглянуть на нашу АЧХ? Как вы могли заметить, амплитуда на выходе цепи падает с увеличением частоты. Это означает, что наша RC-цепь является своеобразным частотным фильтром. Такой фильтр пропускает низкие частоты, в нашем случае до 100 Герц, а потом с ростом частоты начинает их “давить”. И чем больше частота, тем больше он ослабляет амплитуду выходного сигнала. Поэтому, в данном случае, наша RC-цепь является самым простейшим ф ильтром н изкой ч астоты (ФНЧ).

Полоса пропускания

В среде радиолюбителей и не только встречается также такой термин, как . Полоса пропускания – это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы.

Как же определить полосу пропускания? Это сделать довольно легко. Достаточно на графике АЧХ найти уровень в -3 дБ от максимального значения АЧХ и найти точку пересечения прямой с графиком. В нашем случае это можно сделать легче пареной репы. Достаточно развернуть нашу диаграмму на весь экран и с помощью встроенного маркера посмотреть частоту на уровне в -3 дБ в точке пересечения с нашим графиком АЧХ. Как мы видим, она равняется 159 Герц.


Частота, которая получается на уровне в -3 дБ, называется частотой среза . Для RC-цепи ее можно найти по формуле:

Для нашего случая расчетная частота получилась 159,2 Гц, что подтверждает и Proteus.

Кто не желает связываться с децибелами, то можно провести линию на уровне 0,707 от максимальной амплитуды выходного сигнала и смотреть пересечение с графиком. В данном примере, для наглядности, я взял максимальную амплитуду за уровень в 100%.


Как построить АЧХ на практике?

Как построить АЧХ на практике, имея в своем арсенале и ?

Итак, поехали. Собираем нашу цепь в реале:


Ну а теперь цепляем ко входу схемы генератор частоты, а с помощью осциллографа следим за амплитудой выходного сигнала, а также будем следить за амплитудой входного сигнала, чтобы мы были точно уверены, что на вход RC-цепи подается синус с постоянной амплитудой.


Для экспериментального изучения АЧХ нам потребуется собрать простенькую схемку:


Наша задача состоит в том, чтобы менять частоту генератора и уже наблюдать, что покажет осциллограф на выходе цепи. Мы будем прогонять нашу цепь по частотам, начиная от самой малой. Как я уже сказал, желтый канал предназначен для визуального контроля, что мы честно проводим опыт.

Постоянный ток, проходящий через эту цепь, на выходе будет давать амплитудное значение входного сигнала, поэтому первая точка будет иметь координаты (0;4), так как амплитуда нашего входного сигнала 4 Вольта.

Следующее значение смотрим на осциллограмме:

Частота 15 Герц, амплитуда на выходе 4 Вольта. Итак, вторая точка (15;4)


Третья точка (72;3.6). Обратите внимание на амплитуду выходного красного сигнала. Она начинает проседать.


Четвертая точка (109;3.2)


Пятая точка (159;2.8)


Шестая точка (201;2.4)


Седьмая точка (273;2)


Восьмая точка (361;1.6)


Девятая точка (542;1.2)


Десятая точка (900;0.8)


Ну и последняя одиннадцатая точка (1907;0.4)


В результате измерений у нас получилась табличка:

Строим график по полученным значениям и получаем нашу экспериментальную АЧХ;-)

Получилось не так, как в технической литературе. Оно и понятно, так как по Х берут логарифмический масштаб, а не линейный, как у меня на графике. Как вы видите, амплитуда выходного сигнала будет и дальше понижаться с увеличением частоты. Для того, чтобы еще более точно построить нашу АЧХ, требуется взять как можно больше точек.

Давайте вернемся к этой осциллограмме:


Здесь на частоте среза амплитуда выходного сигнала получилась ровно 2,8 Вольт, которые как раз и находятся на уровне в 0,707. В нашем случае 100% это 4 Вольта. 4х0,707=2,82 Вольта.

АЧХ полосового фильтра

Существуют также схемы, АЧХ которых имеет вид холма или ямы. Давайте рассмотрим один из примеров. Мы будем рассматривать так называемый полосовой фильтр, АЧХ которого имеет вид холма.

Собственно сама схема:


А вот ее АЧХ:


Особенность таких фильтров, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее K u max /√2.


Так как в дБ смотреть график неудобно, поэтому я переведу его в линейный режим по оси Y, убирая маркер


В результате перестроения получилась такая АЧХ:


Максимальное значение на выходе составило 498 мВ при амплитуде входного сигнала в 10 Вольт. Мдя, неплохой “усилитель”) Итак, находим значение частот на уровне в 0,707х498=352мВ. В результате получились две частоты среза – это частота в 786 Гц и в 320 КГц. Следовательно, полоса пропускания данного фильтра от 786Гц и до 320 КГц.

На практике для получения АЧХ используются приборы, называемые характериографами для исследования АЧХ. Вот так выглядит один из образцов Советского Союза


ФЧХ расшифровывается как фазо-частотная характеристика, phase response – фазовый отклик. Фазо-частотная характеристика – это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Разность фаз

Думаю, вы не раз слышали такое выражение, как ” у него произошел сдвиг по фазе”. Это выражение не так давно пришло в наш лексикон и обозначает оно то, что человек слегка двинулся умом. То есть было все нормально, а потом раз! И все:-). И в электронике такое тоже часто бывает) Разницу между фазами сигналов в электронике называют разностью фаз . Вроде бы “загоняем” на вход какой-либо сигнал, а выходной сигнал ни с того ни с сего взял и сдвинулся по времени, относительно входного сигнала.

Для того, чтобы определить разность фаз, должно выполняться условие: частоты сигналов должны быть равны . Пусть даже один сигнал будет с амплитудой в Киловольт, а другой в милливольт. Неважно! Лишь бы соблюдалось равенство частот. Если бы условие равенства не соблюдалось, то сдвиг фаз между сигналами все время бы изменялся.

Для определения сдвига фаз используют двухканальный осциллограф. Разность фаз чаще всего обозначается буквой φ и на осциллограмме это выглядит примерно так:


Строим ФЧХ RC-цепи в Proteus

Для нашей исследуемой цепи


Для того, чтобы отобразить ее в Proteus мы снова открываем функцию “frequency response”


Все также выбираем наш генератор


Не забываем проставлять испытуемый диапазон частот:


Долго не думая, выбираем в первом же окошке наш выход out


И теперь главное отличие: в колонке “Ось” ставим маркер на “Справа”


Нажимаем пробел и вуаля!


Можно его развернуть на весь экран

При большом желании эти две характеристики можно объединить на одном графике


Обратите внимание, что на частоте среза сдвиг фаз между входным и выходным сигналом составляет 45 градусов или в радианах п/4 (кликните для увеличения)


В данном опыте при частоте более 100 КГц разность фаз достигает значения в 90 градусов (в радианах π/2) и уже не меняется.

Строим ФЧХ на практике

ФЧХ на практике можно измерить также, как и АЧХ, просто наблюдая разность фаз и записывая показания в табличку. В этом опыте мы просто убедимся, что на частоте среза у нас действительно разность фаз между входным и выходным сигналом будет 45 градусов или π/4 в радианах.

Итак, у меня получилась вот такая осциллограмма на частоте среза в 159,2 Гц


Нам надо узнать разность фаз между этими двумя сигналами


Весь период – это 2п, значит половина периода – это π. На полупериод у нас приходится где-то 15,5 делений. Между двумя сигналами разность в 4 деления. Составляем пропорцию:

Отсюда х=0,258п или можно сказать почти что 1/4п. Следовательно, разница фаз между двумя этими сигналами равняется п/4, что почти в точности совпало с расчетными значениями в Proteus.

Резюме

Амплитудно-частотная характеристика цепи показывает зависимость уровня на выходе данного устройства от частоты передаваемого сигнала при постоянной амплитуде синусоидального сигнала на входе этого устройства.

Фазо-частотная характеристика – это зависимость сдвига по фазе между синусоидальными сигналами на входе и выходе устройства от частоты входного колебания.

Коэффициент передачи – это отношение на выходе цепи к напряжению на ее входе. Если коэффициент передачи больше единицы, то электрическая цепь усиливает входной ссигнал, если же меньше единицы, то ослабляет.

Полоса пропускания – это диапазон частот, в пределах которого АЧХ радиотехнической цепи или устройства достаточно равномерна, чтобы обеспечить передачу сигнала без существенного искажения его формы. Определяется по уровню 0,707 от максимального значения АЧХ.

Я купил bluetooth-наушники Motorola Pulse Escape. Звучание в целом понравилось, но остался непонятен один момент. Согласно инструкции, в них имеется переключение эквалайзера. Предположительно, наушники имеют несколько вшитых настроек, которые переключаются по кругу. К сожалению, я не смог определить на слух, какие там настройки и сколько их, и решил выяснить это при помощи измерений.

Итак, мы хотим измерить амплитудно-частотную характеристику (АЧХ) наушников — это график, который показывает, какие частоты воспроизводятся громче, а какие — тише. Оказывается, такие измерения можно произвести «на коленке», без специальной аппаратуры.

Нам понадобится компьютер с Windows (я использовал ноутбук), микрофон, а также источник звука — какой-нибудь плеер с bluetooth (я взял смартфон). Ну и сами наушники, конечно.

(Под катом — много картинок).

Подготовка

Вот такой микрофон у меня нашёлся среди старых гаджетов. Микрофон копеечный, для разговоров, не предназначенный ни для записи музыки, ни тем более не для измерений.

Конечно, такой микрофон имеет свою АЧХ (и, забегая вперёд, диаграмму направленности), поэтому сильно исказит результаты измерений, но для поставленной задачи подойдёт, потому что нас интересуют не столько абсолютные характеристики наушников, сколько то, как они изменяются при переключении эквалайзера.

У ноутбука имелся всего один комбинированный аудиоразъём. Подключаем туда наш микрофон:


Windows спрашивает, что за прибор мы подключили. Отвечаем, что это микрофон:


Windows — немецкий, извините. Я ведь обещал использовать подручные материалы.

Тем самым единственный аудиоразъём оказывается занятым, поэтому и нужен дополнительный источник звука. Скачиваем на смартфон специальный тестовый аудиосигнал — так называемый розовый шум. Розовый шум — это звук, содержащий весь спектр частот, причём равной мощности по всему диапазону. (Не путайте его с белым шумом! У белого шума другое распределение мощности, поэтому его нельзя использовать для измерений, это грозит повреждением динамиков).

Настраиваем уровень чувствительности микрофона. Нажимаем правую кнопку мыши на значке громкоговорителя в Windows и выбираем регулировку устройств записи:


Находим наш микрофон (у меня он получил название Jack Mic):


Выбираем его в качестве устройства записи (птичка в зелёном кружочке). Выставляем ему уровень чувствительности поближе к максимуму:


Microphone Boost (если есть) убираем! Это автоматическая подстройка чувствительности. Для голоса — хорошо, а при измерениях будет только мешать.

Устанавливаем на ноутбук измерительную программу. Я люблю TrueRTA за возможность видеть сразу много графиков на одном экране. (RTA — по-английски АЧХ). В бесплатной демо-версии программа измеряет АЧХ с шагом в октаву (то есть соседние точки измерения отличаются по частоте в 2 раза). Это, конечно, очень грубо, но для наших целей сойдёт.

При помощи скотча закрепляем микрофон около края стола, так чтобы его можно было накрыть наушником:


Важно зафиксировать микрофон, чтобы не сдвинулся в процессе измерений. Подсоединяем наушники проводом к смартфону и кладём одним наушником поверх микрофона, так чтобы плотно закрыть его сверху — примерно так наушник охватывает человеческое ухо:


Второй наушник свободно висит под столом, из него мы будем слышать включённый тестовый сигнал. Убеждаемся, что наушники лежат стабильно, их тоже нельзя сдвигать в процессе измерений. Можно начинать.

Измерения

Запускаем программу TrueRTA и видим:


Основная часть окна — поле для графиков. Слева от него находятся кнопки генератора сигналов, он нам не понадобится, потому что у нас внешний источник сигнала, смартфон. Справа — настройки графиков и измерений. Сверху — ещё кое-какие настройки и управление. Ставим белый цвет поля, чтобы лучше видеть графики (меню View → Background Color → White).

Выставляем границу измерений 20 Hz и количество измерений, скажем, 100. Программа будет автоматически делать указанное количество измерений подряд и усреднять результат, для шумового сигнала это необходимо. Выключаем отображение столбчатых диаграмм, пусть вместо них рисуются графики (кнопка сверху с изображением столбиков, отмечена на следующем скриншоте).

Сделав настройки, производим первое измерение — это будет измерение тишины. Закрываем окна и двери, просим детей помолчать и нажимаем Go:


Если всё сделано правильно, в поле начнёт вырисовываться график. Подождём, пока он стабилизируется (перестанет «плясать» туда-сюда) и нажмём Stop:


Видим, что «громкость тишины» (фоновых шумов) не превышает -40dBu, и выставляем (регулятор dB Bottom в правой части окна) нижнюю границу отображения в -40dBu, чтобы убрать фоновый шум с экрана и покрупнее видеть график интересующего нас сигнала.

Теперь будем измерять настоящий тестовый сигнал. Включаем плеер на смартфоне, начав с малой громкости.

Запускаем измерение в TrueRTA кнопкой Go и постепенно прибавляем громкость на смартфоне. Из свободного наушника начинает доноситься шипящий шум, а на экране возникает график. Добавляем громкость, пока график не достигнет по высоте примерно -10...0dBu:


Дождавшись стабилизации графика, останавливаем измерение кнопкой Stop в программе. Плеер тоже пока останавливаем. Итак, что мы видим на графике? Неплохие басы (кроме самых глубоких), некоторый спад к средним частотам и резкий спад к верхним частотам. Напоминаю, что это не настоящая АЧХ наушников, свой вклад вносит микрофон.

Этот график мы возьмем в качестве эталонного. Наушники получали сигнал по проводу, в этом режиме они работают как пассивные динамики без всяких эквалайзеров, их кнопки не действуют. Занесём график в память номер 1 (через меню View → Save to Memory → Save to Memory 1 или нажав Alt+1). В ячейках памяти можно сохранять графики, а кнопками Mem1..Mem20 в верхней части окна включать или отключать показ этих графиков на экране.

Теперь отсоединяем провод (как от наушников, так и от смартфона) и подключаем наушники к смартфону по bluetooth, стараясь не сдвинуть их на столе.


Снова включаем плеер, запускаем измерение кнопкой Go и, регулируя громкость на смартфоне, приводим новый график по уровню к эталонному. Эталонный график изображён зелёным, а новый — синим:


Останавливаем измерение (плеер можно не выключать, если не раздражает шипение из свободного наушника) и радуемся, что по bluetooth наушники выдают такую же АЧХ, как по проводу. Заносим график в память номер 2 (Alt+2), чтоб не ушёл с экрана.

Теперь переключаем эквалайзер кнопками наушников. Наушники рапортуют бодрым женским голосом «EQ changed». Включаем измерение и, дождавшись стабилизации графика, видим:


Хм. Кое-где есть отличия в 1 децибел, но это как-то несерьёзно. Скорее похоже на погрешности измерений. Заносим и этот график в память, переключаем эквалайзер ещё раз и после измерения видим ещё один график (если очень хорошо присмотреться):


Ну, вы уже поняли. Сколько я ни переключал эквалайзер на наушниках, никаких изменений это не давало!

На этом, в принципе, можно заканчивать работу и делать вывод: у этих наушников работающего эквалайзера нет . (Теперь понятно, почему его не получалось услышать).

Однако тот факт, что мы не увидели никаких изменений в результатах, огорчает и даже вызывает сомнения в правильности методики. Может, мы измеряли что-то не то?

Бонусные измерения

Чтобы убедиться, что мы измеряли АЧХ, а не погоду на Луне, давайте покрутим эквалайзер в другом месте. У нас же есть плеер в смартфоне! Воспользуемся его эквалайзером:

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1 Расчет спектра входного сигнала

2 Расчет частотных характеристик

3 Расчет спектра отклика

4 Расчет временных характеристик

5 Расчет отклика с помощью переходной характеристики

1 Расчет спектра входного сигнала

Параметры входного сигнала (воздействия) u 1 (t) представлены в таблице 1.2.

Таблица 1.2 - Параметры воздействия

Значения A - в вольтах (В), т.к. воздействием является напряжение. На рисунке 1.2 изображен входной сигнал u 1 (t) в соответствии с данными таблицы 1.2.

Рисунок 1.2 - Временная диаграмма воздействия

Изначально определим спектр воздействия u(t). Разложим данную функцию в ряд Фурье в комплексной форме формула 1.1:

где А n -спектр амплитуд входного сигнала

nt-спектр фаз входного сигнала

n - находится в пределах от 0 до 10.

Скважность импульса входного сигнала q - это отношение периода импульса Т к его длительности t u , и определяется по формуле 1.2

Данные расчётов приведены в таблице 1.3.

Таблица 1.3 - Расчёт спектра воздействия

Ниже, на рисунке 1.4 а); б), приведены спектральные диаграммы воздействия, построенные по результатам расчётов.

Рис. 1.4 Спектральные диаграммы воздействия (F=200кГц)

2 Расчет частотных характеристик

2.1 Расчет комплексной передаточной функции

Комплексная передаточная функция рассчитывается по формуле 2.1:

Для определения К(jw ) , необходимо задаться значением и по закону Ома в комплексной форме определить ток:

Полиномиальные коэффициенты - , равны:

2.2 Расчет амплитудно-частотной характеристики цепи

Амплитудно-частотная характеристика цепи рассчитывается по формуле 2.1.

(2.1)

АЧХ рассчитываются на частотах, кратных частоте следования периодического несинусоидального воздействия, отклик на которое необходимо определить.

Таблица 2.1 - Результаты расчетов АЧХ

,

По данным расчетов строятся графики АЧХ.

2.3 Расчет фазо-частотной характеристики (ФЧХ) цепи

Расчет фазо-частотной характеристики (ФЧХ) цепи рассчитывается по формуле 2.2.

; (2.2)

где - аргумент числителя,

- аргумент знаменателя

Из формулы 2.2 следует, что для расчета фазо-частотной характеристики (ФЧХ) цепи необходимо рассчитать

(2.3)

(2.4)

Расчет ФЧХ необходимо выполнять для тех же частот, что и для АЧХ.

Таблица 2.2 - Результаты расчетов ФЧХ

,

По данным таблиц 2.1 и 2.2 построил амплитудно-частотные и фазо-частотные характеристики представленные на рисунке 2.1, 2.2 соответственно.

Рисунок 2.1 - Амплитудно-частотные характеристики

Рисунок 1.5 - Фазо-частотные характеристики

3 Расчет спектра отклика

Поскольку амплитуды гармонических составляющих отклика (выходного сигнала) определяются по формуле 3.1.

; (3.1)

И следовательно начальные фазы определяются по формуле 3.2.

; (3.2)

То, необходимо результаты расчетов представить таблицей, в которую необходимо свести ранее полученные значения для одинаковых частот.

Таблица 3.1 - Расчет спектра отклика

,

По данным расчетов, представленных в таблице 3.1 построил спектральные диаграммы амплитуд и фаз отклика (выходного сигнала) рисунок 3.1 и 3.2 соответственно.

Рисунок 3.1 - Спектральные диаграммы амплитуд отклика (F=200 кГц)

Рисунок 3.2 - Спектральные диаграммы фаз отклика (F=200 кГц)

Данные мгновенных значений тока для расчета отклика представлены в таблице 3.2.

Таблица 3.2 - Расчет отклика

По результатам расчетов и данных приведенных в таблице 3.2 строится график зависимости I 3 (t ) - график отклика, определенный спектральным методом для m гармоник (m = 10).

Рисунок 3.3 - Временная диаграмма отклика

4 Расчет временных характеристик

Для расчета временных характеристик необходимо переписать полином знаменателя:

,

Теперь необходимо заменить, приравняв его за ноль, получим характеристическое уравнение, формула 4.1:

, (4.1)

Данное уравнение необходимо решить для ранее найденных значений полиномиальных коэффициентов.

;

,

. (4.2)

Для комплексно-сопряженных корней характеристического уравнения свободная составляющая переходной характеристики определяется по формуле 4.3:

; (4.3)

где и - постоянные интегрирования.

Принужденная составляющая тока соответствует постоянному току в цепи, при условии, что индуктивность L , эквивалентна короткому замыканию (КЗ), а емкость С - разрыву в цепи и воздействие

Переходная характеристика рассчитывается по формуле 4.4:

(4.4)

Для нахождения постоянных интегрирования и необходимо определить по схеме и, (см. рис. 1.1). Так как временные характеристики определяются при нулевых начальных условиях и при условии, что, то необходимо записать следующие соотношения:

, (4.5)

. (4.6)

Из исследуемой схемы видно, что

, (4.7)

значит значение будет определяться по формуле 4.8.

(4.8)

Значение тока и его производной в уравнениях найдены при условии, что, следовательно, эти значения соответствуют начальным значениям переходной характеристики. Исходя из этого следует записать следующие соотношения:

(4.9)

Найдем и из формулы (4.4) и приравняем их соответствующим значениям из формулы (4.9):

(4.10)

. (4.11)

. (4.12)

Импульсную характеристику найдем по переходной, как следующее выражение:

. (4.13)

По выражениям (4.11), (4.12) рассчитываем временные характеристики.

Таблица 4.1 - Расчет переходной характеристики

Таблица 4.2 - Расчет импульсной характеристики

По расчетным данным строим графики временных характеристик:

Рисунок 4.1 - Переходная характеристика

Рисунок 4.2 - Импульсная характеристика

5 Расчет отклика с помощью переходной

характеристики

5.1 Расчет отклика цепи временным методом

Поскольку за время, равное периоду T воздействия, временные характеристики практически достигают значения принужденной составляющей, отклик на периодическое воздействие можно найти как повторяющийся отклик на воздействие в виде одиночного прямоугольного импульса:

для;

для.

Таблица 5.1 - Расчет отклика цепи временным методом

По расчетным данным, представленным в таблице 5.1 строится график зависимости - график отклика, представленный на рисунке 5.1.

Рисунок 5.1 - Временная диаграмма отклика

Подобные документы

    Методы определения отклика пассивной линейной цепи на воздействие входного сигнала. Расчет входного сигнала. Определение дифференциального уравнения относительно отклика цепи по методу уравнений Кирхгофа. Расчет временных и частотных характеристик цепи.

    курсовая работа , добавлен 06.06.2010

    Определение отклика пассивной линейной цепи, к входу которой приложен входной сигнал. Расчет проводится спектральным и временным методами. Расчет спектра входного сигнала и частотных характеристик схемы. Расчет отклика с помощью переходной характеристики.

    курсовая работа , добавлен 16.09.2010

    Расчет отклика в цепи, временных характеристик цепи классическим методом, отклика цепи интегралом Дюамеля, частотных характеристик схемы операторным методом. Связь между частотными и временными характеристиками. Амплитудно-частотные характеристики.

    курсовая работа , добавлен 30.11.2010

    Определение спектральным и временным методами отклика пассивной линейной цепи, к входу которой приложен входной сигнал. Амплитудно-частотная и фазо-частотная характеристики цепи. Расчет спектра отклика, временных характеристик. Параметры обобщенной схемы.

    курсовая работа , добавлен 25.03.2010

    Определение отклика пассивной линейной электрической цепи на заданное воздействие временным и спектральным методом: разложение входного сигнала на гармоники, построение АЧС и ФЧС, расчет коэффициента передачи, расчет переходной и частотных характеристик.

    курсовая работа , добавлен 31.12.2010

    Определение корреляционной функции входного сигнала, расчет его амплитудного и фазового спектра. Характеристики цепи: амплитудно-частотная, фазо-частотная, переходная, импульсная. Вычисление спектральной плотности и построение графика выходного сигнала.

    курсовая работа , добавлен 18.12.2013

    Рассмотрение принципиальной схемы ARC-цепи. Расчет нулей и полюсов коэффициента передачи по напряжению, построение графиков его амплитудно-частотной и фазово-частотной характеристик. Определение частотных и переходных характеристик выходного напряжения.

    курсовая работа , добавлен 18.12.2011

    Определение характеристического сопротивления, переходной импульсной характеристики цепи классическим методом, комплексного коэффициента передачи цепи, передаточной функции, проведение расчета отклика цепи на произвольное по заданным параметрам.

    практическая работа , добавлен 25.03.2010

    Определение передаточной функции цепи. Анализ частотных, временных, спектральных характеристик радиотехнических цепей. Исследование влияния параметров цепи на характеристики выходного сигнала. Нахождение выходного сигнала методом интеграла наложения.

    курсовая работа , добавлен 09.08.2012

    Анализ схемы, особенности расчёта цепей с операционными усилителями. Вычисление передаточной функции, составление ее карты и проверка по схеме. Расчёт частотных и временных характеристик функции. Определение реакции цепи на прямоугольный импульс.

Определение ФЧХ

Для выяснения физического смысла частотной характеристики рассмотрим динамическое звено с передаточной функцией и импульсной характеристикой , на вход которого подаем гармонический сигнал .

Вспомним, что решение линейного дифференциального уравнения динамического звена, в рамках классического метода, состоит из двух составляющих – свободной и установившейся.

Установившаяся составляющая в случае гармонической функции времени, стоящей в правой части уравнения, так же является гармонической функцией времени. Поэтом установившийся сигнал на выходе динамического звена можно описать следующим выражением



.

Сигнал на выходе звена определим с помощью теоремы об умножении изображений

В результате получаем

.

Для перехода к установившемуся режиму полагаем , тогда получаем

.

Но, с другой стороны, имеем по определению прямого преобразования Фурье

.

.

Отсюда следует простой алгоритм экспериментального определения частотной характеристики линейного динамического звена, объекта или системы управления для конкретной частоты :

1. Подать на вход объекта синусоидальный сигнал частоты и постоянной амплитуды.

2. Дождаться затухания свободной составляющей переходного процесса.

3. Измерить амплитуду выходного сигнала и сдвиг его по фазе относительно входного сигнала.

4. Отношение амплитуды выходного установившегося сигнала к амплитуде входного сигнала определит модуль частотной характеристики при частоте .

5. Сдвиг фазы выходного сигнала относительно входного сигнала определит угол (аргумент) частотной характеристики при частоте .

Применяя данный алгоритм для частот от нуля до бесконечности, можно экспериментальным путем определить частотную характеристику конкретного устройства. Функциональная схема экспериментальной установки для снятия частотных характеристик имеет вид

При частоте на экране осциллографа получаем после затухания свободной составляющей следующую картину –

На основании рис. 5 можно построить на комплексной плоскости точку, принадлежащую частотной характеристике устройства, а совокупность точек при изменении частоты от нуля до величины, когда амплитуда выходного установившегося сигнала станет пренебрежимо мала, будет представлять собой амплитудно-фазовую частотную характеристику (АФЧХ). Как видно из рисунка, по этим данным может быть построена любая необходимая частотная характеристика устройства.



Для экспериментального получения частотных характеристик различных объектов в инженерной практике используют специализированные приборы, а в последнее время широко используют для таких целей персональные компьютеры, оснащенные специализированными платами ввода-вывода и пакетами прикладных программ.

Учитывая все вышеизложенное, становится ясным и физический смысл частотной характеристики.

Она показывает, во сколько раз изменяет динамическое звено (устройство), работающее в установившемся режиме, амплитуду входной синусоиды частоты , и на какой угол сдвигает входную синусоиду по фазе.

31. Понятие амплитудночастотной и фазочастотной характеристик системы, методы расчета собственной и резонансной частоты системы.

Амплиту́дно-часто́тная характери́стика (АЧХ) - зависимость амплитуды выходного сигнала некоторой системы от частоты её входного гармонического сигнала. Иногда эту характеристику называют «частотным откликом системы».

АЧХ в теории автоматического управления

АЧХ в математической теории линейных стационарных систем описывает зависимость модуля комплексной передаточной функции линейной системы от частоты. Значение АЧХ при некоторой частоте указывает, во сколько раз амплитуда сигнала на выходе системы отличается от амплитуды входного сигнала на этой же частоте.

На графике АЧХ в декартовых координатах по оси абсцисс откладывается частота, а по оси ординат - отношение амплитуд выходного и входного сигналов системы.

Обычно для оси частоты используется логарифмический масштаб, так как отображаемый диапазон частот может изменяться в достаточно широких пределах (от единиц до миллионов герц или рад/с). В случае, когда логарифмический масштаб используется и на оси ординат, АЧХ принято называть логарифмической амплитудно-частотной характеристикой.

ЛАЧХ широкое применяется в теории автоматического управления в связи с простотой построения и наглядностью при исследовании поведения систем автоматического регулирования.

Фа́зочасто́тная характеристика (ФЧХ) - зависимость разности фаз между выходным и входным сигналами от частоты сигнала, функция, выражающая (описывающая) эту зависимость, также - график этой функции.

Для линейной электрической цепи, зависимость сдвига по фазе между гармоническими колебаниями на выходе и входе этой цепи от частоты гармонических колебаний на входе.

Часто ФЧХ используют для оценки фазовых искажений формы сложного сигнала, вызываемых неодинаковой задержкой во времени его отдельных гармонических составляющих при их прохождении по цепи.

Определение ФЧХ

В теории управления ФЧХ звена определяется тангенсом отношения мнимой части передаточной функции к действительной.

32. Переходная характеристика системы. Методы экспериментального снятия переходных характеристик. Виды переходных характеристик.

Переходная характеристика системы – это реакция на единичное ступенчатое воздействие при нулевых начальных условиях объекта управления и характеризует его динамические свойства. Получение переходной характеристики экспериментальным путем с последующим получением параметров ОУ – первый шаг на пути к определению настроек ПИД-регулятора, ПИ-регулятора, П-регулятора.

Зачастую на практике речь идет о разгонной характеристике.

Разгонная переходная характеристика объекта будет получена в том случае, если на вход подать ступенчатое воздействие, отличное от единицы. Зачастую на реальном объекте подают входное воздействие в несколько процентов хода исполнительного механизма, а потом делят выходное воздействие на входное.

В устойчивых АСР возможны виды переходных процессов:

(а)- апериодический сходящийся процесс, имеет одну амплитуду колебания

(б)- затухающий колебательный процесс

(в)- колебательный процесс с постоянной амплитудой колебания.

АСР находится на грани устойчивости.

Похожие публикации